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We study in some detail the properties of a previously proposed new class of string and brane models whose
world-sheet(world-volume actions are built with a modified reparametrization-invariant measure of integra-
tion and which do not contain argd hocdimensionful parameters. The ratio of the new and the standard
Riemannian integration measure densities plays the role of a dynamically generated string or brane tension.
The latter is identified agthe magnitude 9fan effective(non-Abelian electric field strength on the world-
sheet or world-volume obeying the standard Gauss-law constraint. As a result a simple classical mechanism for
confinement via modified-measure “color” strings is proposed where the colorlessness of the “hadrons” is an
automatic consequence of the new string dynamics.
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I. INTRODUCTION: MAIN IDEAS AND FEATURES OF Now following Refs.[3], instead of the standard measure
THE THEORY of integration d?c \—y, we want to consider a new

reparametrization-invariant measure on the string world-
One of the characteristic features of string and brane thecsheet whose densitgp is independent of the Riemannian

ries[1] is the introductiorad hocfrom the very beginning of metric y,,. This approach of considering an alternative in-
a dimensionful scale—the so called strifiyang tension. tegration measure has been studied in the contexd of
On the other hand, a lot of attention has been given to thgrayitational theory, in particular, in relation to the cosmo-
idea that any fundamental theory of nature should not CONfpgical constant problerB] (and references therairas well
tain any ad hoc fundamental scales and that these scalegg the fermion families and long-range force probléfis
should rather appear as a result of dynamical generation, e.g., |ndeed, if we introduce two auxiliary scalar fielgalars
through boundary conditions on the classical level, and sporyoth from the point of view of the (% 1)-dimensional
taneous symmetry breaking and/or dimensional transmutggor|d-sheet of the string, as well as from the point of view of
tion on the quantum levelsee, for instance, Ref2] about  he embeddind-dimensional univerdep' (i =1,2), we can

spontaneous generation of Newton's gravitational constant construct the following world-sheet measure density:
In the context of string and brane theories, the above idea

was first explored in Ref$3]. In this section we will briefly 1 o . .
review, with some additional new accents, the main proper- D(p)= §8i18ab0a@'3b¢'=8ij90't?0901- 2
ties of the modified string and brane theoried 3ffin order
to prepare the ground for revealing new interesting structureg s interesting to notice that?c ®(¢)=dede?, that is,
inherent in these theories. To this end let us first recall tthe measure of integraticahza-q) Corresponds to integrating
standard POlyakOV'type action for the bosonic String, WhiChn the target space of the aux“iary scalar f|el)ds(| = 1,2)
reads(4] We proceed now with the construction of a new string
action that employs the integration measdfer ® (2) in-
Spo= _Tf dzal — 9 XM X G, (X). (1) stegd of the usual®s /— 5. When cpnsidering the types of
2 K’ actions we can have under these circumstances, the first one
that comes to mind is the straightforward generalization of
Here (0°,0")=(7,0); a,b=0,1; ,»=0,1,...P—1;G,,  the Polyakov-type actiofi):
denotes the external space-time metsig;, is the metric de-
fined on the (I 1)-dimensional world-sheet of the string;
and y=det|| yap||. T indicates the string tension—a dimen-
sionful quantity introduce@d hocinto the theory which de-
fines a scale. Notice that multiplyingS; by a constant, before boundary or
initial conditions are specified, is a meaningless operation
since such a constant can be absorbed in a redefinition of the

1
Si=-3 f d?0 D(9) yIX X "G, (X). (3

*Electronic address: guendel@bgumail.bgu.ac.il measure fieldg' (i=1,2) that appear i@ (o) (2).

TElectronic address: alexk@bgumail.bgu.ac.il The form (3) is, however, not a satisfactory choice for a
*Electronic address: nissimov@inrne.bas.bg string action because the variation ®f with respect toy?®
$Electronic address: svetlana@inrne.bas.bg leads to the rather strong condition
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12 v =
D () I X3, X"G,,(X)=0. (4) Scuw:_j o d(o)R, (11)
If ®+0, it means that X", X"G,,(X)=0, i.e., it means
that the metric induced on the string world-sheet vanishes,
which is clearly not an acceptable dynamics. Alternatively, ifwhich now is not a topological term in contrast to
® =0, no further information is available—also an undesir- [d?c- /— ¥ R in the ordinary string theory with the regular
able situation. world-sheet integration measure. According to Refs],
The situation may be improved by introducing an externawhere modified-measure gravity theories in higher dimen-
antisymmetric tensor gauge fiell,,(X). Then, instead of

Eq. (3), we have to consider the act|on

1
- f d?0 @ ()| 5 Y*P0aX 3pX"G . (X)

Sab
+ ==X 3pX"B,,(X) |,

2=y

whereg®=—¢10=1 ande®=¢1'=0. Varying Eq.(5) with
respect toy®”, we get(if ®+0)

5

I XFIpX'G, +yab4jm_ya X“9gX"B,,=0.  (6)
Contracting the latter equation witf® we see that
8cd
. Hacx#adxvsﬂvz —¥P9 XEIX'G,,.  (7)

Inserting relation(7) into Eq. (6) we obtain

1
IaX 3pX"C 1, = 5 Yapy 90X 39X G, =0, (8)

which coincides with the form of the string equations of
motion corresponding to the Polyakov-type acti@h How-
ever, the actior{5) is not fully satisfactory since it produces

Eq. (6) as an additional constraint.

sionsD>2 have been explored, we know that in order to
achieve physically interesting results one has to proceed in
the first order formalism—employing either the affine con-
nection or the spin connection. In the present paper we will
restrict ourselves by exploring the spin connection formalism
only. This means that the independent dynamical degrees of

freedom are the zweibeig?, the spin connection?” (a
=0,1 are tangent “Lorentz” indexg¢sand the auxiliary sca-
lar fields ¢' entering the new integration measure density
O () (2). .

We will use the notationy?°= egeg—r;ab; the scalar curva-

ture of the spin conection iR(w,e)=e*?e"’R, (w)
where

(w) dawp +wacw1(a<—>b) (12

Notice now that inD=2

wgbz w,e®, (13

wherew, is a vector field. Therefore, we get for the scalar
curvature

ab

R(w)= (Fawp— dpw,). (14

To make further progress and at the same time to show
that one can avoid the need to incorporate an external field, it
is important to notice that terms in the action of the form We conclude that the vector field, , as a geometrical object

S=Jd20 —-yL, 9

associated with the spin connection, can be treated as an
Abelian gauge field\, living on the world-sheet.

Thus, let us consider an Abelian gauge fialddefined on
the world-sheet of the string, in addition to the measure-

which do not contribute to the equations of motion of thedensity fieldse' that appear i (¢) (2), the usual Riemann-

standard closed string, i.e., such tRat yL is a total deriva-

ian metricy,,, and the string coordinate§*. We can then

tive, may yield nontrivial contributions when we consider the construct the following nontrivial contribution to the action

counterparts of Eq9) of the form

S:f d?c ®(@)L. (10

This is so because if/—yL is a total divergencedL in
general is not.

of the form:

ab

1 e
Sgaugezzf dZU‘D(@)ﬁFab(A), Fab=daPp— dpAa.

(15

The above fact is indeed crucial. For example, let us con-
sider the modified-measure string theory with an additionallherefore, the total action to be considered nowSiging

intrinsic (1+ 1)-dimensional scalar curvature term

=S,+ Syauges reading explicitly
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1 Do)
> YL XEIpX'G,, sabab( =0, (21)

Sstring:_J dzo'q)(‘P) \/?)/

N gab [0.XE8XB, ~ Fan(A)] WhiCh can.be_ integrated to yield spontaneously induced
2~y b Bur™ Fab string tension:
=— J d?oc ®(@)L. (16) M=conleT. (22)
=
The properties of this model and some of its generalizationgiotice that Eq. (22) is perfectly consistent with the
will be studied in the following sections. ®-extended Weyl symmetr§d 7), (18). Equation(20), on the

The action(16) is invariant under a set of diffeomor- other hand, is consistent with tlie-extended Weyl symme-
phisms in the target space of the measure-density figlds try only if M=0. We will see in the next section that the
combined with a conforma{Weyl) transformation of the equations of motion indeed imply thst=0. In the case of
metric y,p, nhamely, higher-dimensionap-branes, unlike the string case, the cor-

: i ) responding equations of motion will requirenanvanishing
o'—e"=¢"(¢) sothat®—d'=JP,  (17)  constant value oM [cf. Eq. (49) below].
L Let us turn our attention to the equations of motion de-
whereJ=def|d¢ /9¢’|| is the Jacobian of the transformation rived from the variation of Eq(16) with respect toy?":

(17), and
cd

1 e
Yab— Yap="J Yab- (18 Do) 5ax“5bX”GW(X)—§?’abﬁch) =0. (23

In what follows we will refer to the set of transformations
(17), (18) as ®-extended two-dimensional Weyl transforma-
tions and, accordingly, to the action16) as being
d$-extended Weyl invariant. Notice also that the spin-
curvature term[Eg. (11) with R as in Eq.(14)] is also 1
®-extended Wey! invariantd§-extended Wey! transforma- (aaxﬂabe——7aby°dacxﬂade)Gw(x)
tions do not affect the spin connectjon 2
The combination £2%\/— y)F,;, is a genuine scalar. In 1
two dimensions it is proportional t§/F,,F2®. In the non- +5vapM=0. (24)
Abelian case one can consider terms in the action of the form
® JTr(FaF®), the latter being ad-extended Weyl-  myltiplying the above equation by and summing over
invariant objecf yTr(F,,F®°) is also a genuine scalaThis 3 b, we find thatM =0, i.e., Eqs.(24) with M=0 are ex-
model will be studied in Sec. V below. actly of the form of Egs.(8) coming from the standard
To demonstrate some general features of the theory, Weolyakov-type actior(1) (recall also that it is onlyM =0
will first follow the Lagrangian formalism for solution of the \which is consistent with the&-extended Weyl invariange
modified-measure string modél6) explored in Refs[3].  After Eq.(22) is used, the equations obtained from the varia-
Variation of the action(16) with respect toe' yields the  tion of the action(16) with respect toX* are seen to be
equationghere we seB,,=0 for simplicity) exactly the same as those obtained from the usual Polyakov-
type action as well.

Solving the constraint Eq20) for (£°%/y— y)F.q and in-
serting the result back into Eq23) we obtain[provided
P (¢)#0]

) Scd
£®9p¢' da| YUK IgX"G ,,(X)——==Fcq | =0.

V=

Il. BOSONIC STRINGS WITH A MODIFIED MEASURE:
(19) CANONICAL APPROACH

It is instructive to study the modified-measure string
model (16) also within the framework of the canonical
ﬁamiltonian formalism.

Before proceeding let us note that we can extend the
model (16) by putting pointlike charges on the string world-

Ry sheet which interact with the world-sheet gauge figld
VeI XEIgX G, (X) ———=F cg=M. (20)

\/?y Cc

The equations of motion of the gauge figdd tell us about '
how the string tension appears as an integration constant. For the canonical momenta gf,A;,X* we obtain[using
Indeed, these equations are the short-hand notatioh from Eq. (16)]

If det]|]e®d,¢'||#0 meaningd®(¢)+0, then we conclude
that all the derivatives of the quantity inside the parenthese
in Eq. (19) must vanish, i.e., this, quantity must equal a
certain constani which will be determined later on:

S= Sstring_Z eif d7Ao(7,09). (25
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mf=—gijd, L, wAlEEZM; (26) ).(“E)'(“(---)Z—ﬂ —V-I-ﬁUX)‘B,,)\)—y—Ol(?GX“,
V=v J=yy*\ E e
(29
Pu=®(9)| — (¥*X"+7%3,X")G,,, A=Ay )
1 eI ,
=X B 27) =doAo— J—_ywﬂw )3 X"B,,

Note particularly the second E6), showing that the ratio
of the modified and the usual Riemannian integration-
measure densities has the physical meaning otlantric
field strengthon the world-sheet.

We have also the following primary constraints:

+¢—_y(%y°°>'<“<~ SR IKEC )X

1 11 v
+5710,X49,X" |G, (30

ma =0, ,a=0, é’(,goiﬂ'i‘pzo, (28)

0 Y

In Eq. (30) we used the shorthand notatid(- - -) defined

where the last constraint follows directly from the first Eq. " Eq. (29). Since the original ngrangmﬁ n Eq. (16) is
(26). From Eqs.(26), (27) we can express the velocities in homogeneous of first order with respect ¢ we have
terms of the canonical coordinates and momenta as followsrf¢'— £=0 and, therefore, the canonical Hamiltonian reads

: . 1 1[GHr , '
H=PXHC B )= = G 5] o (Pt B8 X B ) (Pt E0,X Buu) +EGud X0, X
e s
+W)PM’90XM+E50AO_EV_78 1"‘2 € 0(o—ai)Ao, (31
P

where we used the expressions for the velocities as functioria particular, we obtain that the canonical Hamiltonian is a
of the canonical coordinates and mome(#8), (30) and we linear combination of constraints only.

also included the pointlike charge interaction terms from Eq. The Poisson algebra of the constraints can be computed
(25). Commuting of the canonical Hamiltoni#81) with the  straightforwardly. First, we observe that the last constraint in
primary constraintq28) leads to the following secondary Eq.(28) spans &centerlessVirasoro algebra:

constraints:

{aU(Pi Wfo(a)’ao’()oi Wro(a-,)}

s =2(9,,(,oi77fp(0')(905(0'—U’)+(90((9Ugoi7ri‘p)5((r—0").
=0, 9,E-2 gd(o—0y)=0, (32)
dy@t i (35

The only nontrivial commutator of the latter with the rest of

(Clald , L the constraints is
?(Pp+ El?O.X'U' B/,L/,L/)(PV—’_E&(TX va’)

(33

+EG,,,d,X"3,X"=0, 9,0 (o),

5 5
1(0,)]:_(9”( l)é(a'—o”).
o dop
(36)
J XM= +EJd,X"B,,)d X*=0. 34
Pude P X B0 (39 Therefore, both constraints,¢' =f and w5/ d,¢* or, equiva-
lently, their linear combinationF,=d,¢'mwf and F,

Uin analogy with ordinary electrodynamics or Yang-Mills theory =%2/d,@*—w*1/3,¢?, span a closed algebra of first-class
the canonically conjugated momentum, =E of the spacelike constraints, which implies that all auxiliary scalassenter-
gauge-field componen, is by definition the electric field strength. ing the modified measur@) arepure gaugedegrees of free-
However, unlike the ordinary case is now not proportional to ~ dom. Let us note that both constrainfs , involving the
Foi(A); see also Sec. V for the non-Abelian case. auxiliary scalars act only on the latter:
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i SN =9 e S0, 1
10 {F1(0),¢'(0")}=0,0'8(c~0") T+EZGMV<%i(GMKiBM’<)(9”XK>
826! =~ Fola), ¢/ (")} il
x Er(vath)agX*» (39

=—&(9,¢)) " t8(0—0"), (37

span the same first-class constraint algebra of two mutually

whereas they leave unaffected the rest of the dynamicgiommuting centerless Virasoro algebras as in the case of the
string degrees of freedom. The same result holds also in therdinary - Polyakov-type string[in the standard case
more general case of modified-measprerane models. H,..,n(B)=34;,B,);=0] provided we identify the constant

Next, we observe that the second constraint in (Ba) is world-sheet electric fieldE with the ordlnary string tension
nothing but a Gauss-law first-class constraint for the world-T- ) ] N
sheet Abelian gauge field, witB being the corresponding ~ To summarize so far, we find that the modified-measure
electric field strength. ObvioushE is piecewise constant String model(16) [or (25)], containing ncad hocdimension-
(with respect too) on the world-sheet with jumps at the ful parameters, producesdynamically generateeffective

locations of the pointlike charges:

E=Eo+>, €6(0—0;). (38)

Moreover, since the canonical Hamiltoniédil) does not de-
pend explicitly onA;, E is conservedworld-sheet time in-
dependent

Finally, the constraint$33), (34), or, more properly, the
linear combinations thereof,

string tension, which is equal to the ratio of the modified and
usual Riemannian integration-measure densities, and which
has the physical meaning of a world-sheet electric field
strength. As a result the dynamical string tensioripigce-
wise) constant along the string with possible jumps at the
locations of attached pointlike chargese Sec. V C for ex-
plicit examples.

III. BOSONIC BRANES WITH A MODIFIED MEASURE

The action of bosonig-branes with a modified world-
volume integration measure rea@s. [3])

1 8a1...ap+1
_ +1 - b v _
Sp-brane_ f dP o (o) 2 y? FaXHpX G,uv+ (p+1 \/_—y[aalxlul' o aap+1xﬂp+lBM1 cMptl Fal o 'ap+1(A)]
s—f dP o d(@)L; (40)
— a a, i i 1 a ap i j j
D(p)= (p‘l‘—l)!Sil B .ierls 10 p+15al@ 1.. '&aerl(P p+i= asijl N -Jps 1% aal(P 1... aap(P P, (42
|
Here the following notation is used: 8“1"'apFoa1...ap(A)=A— 9 AL (43)
o=(0")=(a"=1,0"=(7,0); with
Fal...ap+l(A):(p+1)¢9[alAa2...apH]a (42) Esal"‘apAal_”ap, ASESD‘Bl‘"'Bpfleﬁln_Bp_l.
(44)
wherea,b=0,1,...p; «,B=1,...p; i,j=1,... p+1; In analogy with the string case we can p(dlosed
m,v=01,...p-1; and G,, and Bl“'l"'/"p+1 denote  (p—1)-branes on the world-volume of the modified-measure

space-time metric and antisymmetrig« 1)-rank tensor ex-

p-brane (40) coupled to the latter via the auxiliary world-

ternal fields, respectively. Also, it is convenient within the volumep-form gauge fieldA,, .. 5 giving rise to the follow-
Hamiltonian formalism to introduce the following notation: ing additional term in the actiof?0):
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S= Sp—brane+ S(p— 1)-branes

> f p+1 p 1 aaf‘l &0?p5(p+1)
S Db D & | 4Pl A fdu_ L I o
(p—1)-brane B o al...ap(g) p! € UL Ju [g g|(_)]
E g+ e 1 o o &a'ial o"o-ap—l 5(,3)
— ) a -y 1---Mp—1 .
i eI O-AO(E) u[(p_l)!]zsaal...ap,ls P 07Um1 5U -1 [O- Ul(u)]
(45)
|
Here u=(u°= T,um)z(ﬂﬁ) with m=1,... p—1 are the The arbitrariness dfl is due to the manifest invariance of

world-volume parameters of the pertinept{1)-branes em- the modified-measurg-brane action(40) under the follow-
bedded in the world-volume of the originpibrane via the ing global scale symmetr}3]:
parameter equatlons oi(u) (and We have chosen the
static gauger’= r=u0 for all of them.2 Also, in the second A ol Vab—>(H )\i>7aba
equality (45) we have used the notation fro(4). i

The Lagrangian formalism analysis of the modified- (r-1)12
measurep-brane mode(without attached lower-dimensional _>( H )\_) A (51)
branes$ (40) has been performed [18]. It parallels the analy- 8 o a8y
sis of the modified-measure string modef. Sec. ) where
the analogues of Eq$20)—(23) now read(taking for sim- ~ which can be used to fix the value bf, e.g.,M=3(p—1).
plicity B =0) Note that the “boundary” ternt45) is not invariant under the
scale symmetry51), unless we simultaneously rescale the
“charge” coupling constantg; . Moreover, unlike the string

Kp--Hpia

1 aby Xk X'G — g% case there is no analogue of teextended Weyl symmetry
27 Tt b Py (p+1)V—vy (17), (18) for the modified-measung-brane mode(40). The
reason is that fop=2 the standard measure densify- y
XFa, . 2, (A=M, (46)  transforms differentlyy— y—[J(¢)]P* V2= from the

modified measure densith (¢) (17) (cf. Refs.[7]).

) ) The canonical Hamiltonian treatment of thgbrane
£33 Apg, _) =0— =const=T, (47) model(40) with attached p— 1)-branes on its world-volume
NTY VY similarly follows the same steps as the canonical treament of

the modified-measure string model in the previous section.
For the canonical momenta gf , A, X* we have[using the

Yab .
IXPIXTG ,,————————=gFp+1 shorthand notatioh from Eq. (40)]
) o (pr DV .
XFay..a,,,(A)=0. (49 i R A
In Eq. (46) M denotes an arbitrary integration constant which d(¢)
enters the relation between the intrinsic and the induced met- m4,== — \/— (52
rics on thep-brane world-volume that follows from Eq&l6) Y
and (48):
o1 Pu=®(¢)| = (¥*X"+y*9,X")G,,,
Yab=515 0aX*IpX'G,, (49
2M 86{1 . [e3
- g X9, XPB,,  ,|. (63
Also we have V=vy 1 PR
Also, similarly to Eq.(28) we have the following primary
v Yab ¢4 v constraints:
X9 X"G ,,— p+1 Y99 X#9.X"G,,=0.  (50) |
7TA6v=0, m,ab=0, due' mf=0, (549

2In what follows we assume that the € 1)-branes do not inter- where the last Virasoro-like constraints follow directly from
sect with each other on the origingdbrane world-volume. the first Eq.(52).
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At this point it is convenient to reexpress the world-
volume Riemannian metrig,, in terms of its purely space- &aE(a)JrE eif dP~tu
like part v,z and the associated shift vecttbi” and lapse o
function N (see, e.g.[8]):

mp...mpoq

msaal . ..ap718

o dHpy_
dot do Pt

X
Yoo=— N?y+ 74gNN, ou™ - gue

SP[g—ai(0)]=0, (60)

70a:7a3Nﬁ, VQB: Yap (55)  Which is thep-brane analogue of the “Gauss™-law constraint
in the string cas¢second Eq(32)]. Further, since the ca-
— ) — nonical Hamiltonian(56) does not depend explicitly oml
wherey=det|| y,gl[. In partlcular,\/—_y_= Ny. _ (44) (canonically conjugate t6), thep-brane “electric” field
Using Egs.(52), (53) and the notation(S5) we find the  gyengthe is conserved(world-volume time independent
following canonical Hamiltoniaricf. Eq. (31)] : and as long as it obeys the generalized “Gauss law” on the
world-volume Eq.(60), £ is also a world-volumepiecewise

N(G*. . — constant field with jumps along the normals equal to the
= — | — af v .
H 2\ ¢ PuPy+Eyy™G 0. X 0pX “charge” e; when crossing the world-hypersurface of ilie
_ (p—1)-brane.
+ENF(7%,dp) = NP, d,X* The rest of the secondary constraints reads
+&d,A5+[(p—1)—brane termf (56)
GHrY_ — —
—P,P,+Eyy*PG,,0,X X" —A4M yE=0, 61
with the shorthand notation & * 7Y b 7 (61
%ME,P,U(—F e .Gpaalxﬂl .. 'aapxlupBM,U«l oy %ﬂ&axl‘l’z 0,
F(m? dp)=(p—1) 2M —
p+1 o ﬁaX“(S’BXVGMV— mya/;:O. (62)
i
X1

i=2 Sijl...jpsal'“apaalgojl' . ,aapqup

(577  We now observe that for the special choive=3(p—1),
and provided we identify the “electric” field strengthas a
and where the last terms in Eh6) come from Eq.(45). dynamical brane tensiof, the constraint§61), (62) coin-
Commuting the canonical HamiltoniagB6) with the pri-  cide with the secondary constraints within the Hamiltonian
mary constraintg54) [where upon using the notatiofs5)  treatment of the usual Polyakov-likebrane(the latter to-
we havery=0,mya=0,7,5=0 instead ofr,ao=0] we ob-  gether with the primary constraints forms a mixture of first-
tain a set of secondary constraints. Using the Poisson-brackelass and second-class constraints
relation Thus, we conclude from Eqé56), (57) and(61), (62) that
the modified-measur@e-brane model(40) possesses, apart
(9,0 7#(0),F(m%,d0) (")} from the same brane degrees of freedom as the standard
o MO AT OPNT Polyakov-like p-brane, an additional brane degree of free-
Y ® - dom &—a world-volume “electric” field strength, which can
=~ 00— o) daF(m.9¢)(0) 8 be identified as a dynamical brane tension and which, ac-

) ) cording to Eq.(60), may be variable in general.
we get the following secondary constraint:

3,F(7¢,00)=0—F(7¢,dp)=—2M=const, (59) IV. SUPERSTRINGS WITH A MODIFIED MEASURE

. _ _ o We consider the following Green-Schwarz-type of super-
whereM is an arbitrary constaufit is the Hamiltonian coun-  string action with a modified world-sheet integration mea-

terpart of the arbitrary integration constaht appearing sure(for the standard Green-Schwarz superstring action, see,
within the Lagrangian treatment; cf. E¢6)]. Once again, e .g.[9)):

as in the string case, we find that the Virasoro-like con-

straintsd, ¢' w{ together withF(7¢,d¢) +2M =0 [the latter

being defined in E((57)] form a closed algebra of first-class  3\iore detailed discussion of this issue will appear elsewhere: E. I.

constraints, implying that the auxiliary scalar fielgs are  Guendelman, A. Kaganovich, E. Nissimov, and S PachevRydn

pure gauge degrees of freedom. ceedings of the First Conference on Gravity, Astrophysics and
Next, commuting Eq(56) with Tal yields Strings at the Black Seadited by P. Fiziewet al. (to be published
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1 superstring mode(63) is consistently based on a fundamen-
- Eyabngnb# tal (noncomposit)_agauge fieldA, .

For the canonical momenta qf ,A;,X*, 6 we have[us-
ing the shorthand notatidn from Eg.(63) and the definition
(64)]

Ssuperstring:f dza'q)(‘P)

sab

1
+ J—_y( 14( 00,0 0) + EFab(A))

: P
m’=—¢gjd,o'L, mp EEZﬁ

1 \/—_7 !

=- f do d(e)L 63 (68

with the same notation as in Eq4.6) and(2) (for simplicity

— _ 0 _ A,0L
we now takeG,,=7,,,B,,=0) and where P=® ()| = (Mo, —y"14,)

M=, X*+i00"3,0. (64 i
+—=(00,0") ]|, 69
Here 6=(6%) (a=1,...,16) denotes a 16-dimensional \/—y( a )1 (
Majorana-Weyl spinor in the embeddiiy= 10 space-time,
whereaso*=((0"),p) indicate the upper diagonal ¥GL6
blocks of the 3% 32 matricesC ~'I'* with I'* andC being P
the D=10 Dirac and charge-conjugation matrices, respec-
tively.
The Lagrangian in Eq(63) is explicitly invariant under
space-time supersymmetry transformations

i0c*, (70

i
— (9%, ,—y°ML, “)_ﬁx;‘

where the prime now indicates the derivatig. From Egs.
(69), (70) and taking into account the second E8), we
obtain the fermionic primary constraint

S.0=¢, OXF=—i(ed"p),

iD=Py,—(P,—EIl,,)if0c"=0. (71
5€Aa:i(w#6)( ﬁaxﬂ+§0aﬂﬁa6)_ 65) Therefore, we have the following set of primary constraints:
Tp,=0, =0, dyo'mf=0, D=0. (72

In particular, the algebra of supersymmetry transformations
(65) closes oA, up to a gauge transformation: Now, for the velocities as functions of the canonical coordi-
nate and momenta we get

{8,001 Aa=0a —%(qo“e)@zam). (66)

XE+i00"o=TIL(- - -)

Also, the modified-measure superstring actiéf) is in- 1 —Pr 01
variant under the local fermionic kappa symmetry, similarly :ﬁ ?Jr'a‘f”a' - W)H’f
to the standard Green-Schwarz superstring ad8dn Y Y
73
8,0=2i1%(c,k%), & X\=i(00"5.0), 73
A —ill*(00,0)=A(- -
5KAa:O, 1 1( O-p, ) 1( )
s
gac = 19ng_ \/__7
8 (N=yy*)=—8V—y| y*°+ ) (k°3:0), do@
1
. — | = OO~ ..
where k®=3(y2°+£2°/\/— y) k,, is the self-dual fermionic +yOHIE (- )y
local gauge parameter. In particular, let us note that 1
S(B()\~7)=0. 3L | =, ).
Let us note that the actioi®3) bears a resemblance to the 2
modified Green-Schwarz superstring action proposed by Sie- (74)

gel [10] provided we replace the modified integration mea-

sure densityD (¢) with the ordinary one/— y and provided In Eq. (74) we used the shorthand notatibkf(- - -) defined
we redefine the auxiliary gauge fiedd, as a fermionic bilin- in Eq. (73). The canonical Hamiltonian reads

ear composité,= —i6,d,¢“ (cf. second Ref[3]) with ¢

indicating Siegel's auxiliary fermionic world-sheet field, H=PMX“(-~-)+P99(~--)+EA1(~--)+iAaD“
which is a space-time spinor similar # However, let us . o
emphasize that our present approach to the modified-measure =P I1g(- - ) +EAL (- - ) +iD(O(---)—A). (75
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Here (- - -) indicate that all velocities are considered as func-and vector fields which are simultaneously world-sheet sca-
tions of the canonical coordinate and momenta according ttars (“harmonic” variables. For recent developments on this
Eqgs. (73), (74); D is the fermionic primary constrain(1) subject, se¢12] and references therein.

and A is the corresponding fermionic Lagrange multiplier

which is determined from the requirement of the preserva-y STRINGS WITH “ ®-EXTENDED WEYL INVARIANT”

tion of the constrain® under the Hamiltonian dynamics by ACTION FOR NON-ABELIAN WORLD-SHEET
Eq. (75). Inserting in Eq.(75) the expression&r3), (74) we GAUGE FIELD
obtain

A. The regular-measure version of the theory

1 11 ) , As it is well known, in four space-time dimensions the
H=~- mi E[Pﬂ_'E(e"”a )] standard gauge field action  proportional to
J—gd*xTr(F,,F#) is invariant under transformations
gMV—>QZ(x)gW, i.e., it is conformally invariant. D=2,
the appropriate conformally invariant action, provided we
use the standard measuye- y, would be

X[P,—iE(6c,0')]+ENI,,

’)’Ol
+ W)[Pﬂ—iE(ﬂoﬂﬁ’)]H’fHAD

1
| o T ST A F A7

71'(’0
+Ed A=y 7 - [ @ (T AF oA 79

Commuting of the canonical Hamiltonigi@6) with the pri-  where
mary constraint§72) leads to the following secondary con-

straints: Fan(A)=daAp— dpAc+i[Aq, Ap] (80)
w8 is a non-Abelian world-sheet gauge field strength and we

=0, d,E=0("Gauss law"), (77 have used,,(A) = —e,,F01(A). As we see, the actiofr9)
do is not only independent of the conformal factor in the metric,

5 but also it is totally metric independent, i.e., th@=2

_pr LA , A “square-root Yang-Mills” model(79) is topological in the
T.= 2| g TEX'=2i600")| —10"D=0, same sense as, e.g., he=3 Chern-Simons model. Because
of this fact the string and gauge degrees of freedom turn out
1(P 2 to be decoupled.
T = Z(E_ EX') (78) To see that such a theory does not lead to a well defined

dynamics and instead a modified-measure version of E.

Therefore, as in the purely bosonic case we conclude that tHs Necessary, we consider first the equations of motion that
canonical Hamiltonian is a linear combination of constraintsresu“ from Eq.(79). Variation with respect to gauge fields

only. A, vields
As in the bosonic case, the constraints involving the aux-
iliary scalar fields¢' span the same Poisson-bracket algebra v Fou -0 81)
(35), (36) and, therefore, the auxiliary scalars are again pure a \/m
gauge degrees of freedom. The rest of the constraint algebra
is the same as in the case of the standard Green-Schwadt, equivalently
formulation provided (in full analogy with the purely
bosonic casewe identify the world-sheet “electric” field Tr(Fo1VaFo1)
strengthE as dynamically generated string tensibn VaFo1— FOlm =0, (82)

Let us recall that the 16-component fermionic spinor con-
straintD (71) (which is identical to the corresponding fermi- which in turn are equivalent to the equations
onic constraint in the standard Green-Schwarz superstring
mode) contains a Lorentz noncovariant mixture of eight VaFo1= dafFo1 (83
first-class constrainfddamiltonian generators of kappa sym-
metry transformations(67)] and eight second-class con- with f=f(7,0) being an arbitrary colorless world-sheet sca-
straints. To solve the problem of super-Poincacwariant lar field. The general solution of E¢83) reads
guantization of the modified-measure Green-Schwarz super-
string (63) we can, therefore, employ the same kind of refor- For=G e’ ("I MG, (84)
mulation of (63) as in the standard Green-Schwarz case,
which has been proposed in Rdf$1] involving a special set
of additional auxiliary pure gauge bosonic space-time spinor

A0:G_1 _M OJ dO',ef(T,O'/)>G—iG_1(97G,
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A=—-iG 19,G, (85)  wherem, and&=Fq,/\Tr(FoiFoy) are the canonical mo-
menta ofAy, and A4, respectively, and wher&,,A are the
corresponding Lagrange multipliers. Notice the appearance
of the third first-class constraint term in E@6) instead of
the standard nonconstraint tegiir £2. Moreover, the total
number of first-class constraints in E(B6) exceeds the

fnumber of the underlying degrees of freedom.

where G is an arbitrary ,o)-dependent element of the
gauge grougreflecting the gauge freedorwvhereasM, is
an arbitrary constant element of the corresponding Lie alge
bra.

Thus, we see that in thB =2 “square-root Yang-Mills”
action (79) there is an additional freedom in equations o
motion (beyond the usual non-Abelian gauge symmpetry
which is manifested in the appearance of the arbit(aot
determined by the dynamicworld-sheet scalar fieldl( 7, o) )
in Egs. (83)—(85). without charges

This can be equivalently understood from the canonical

Hamiltonian point of view; namely, one can show that the ) . .
canonical Hamiltonian of theD=2 “square-root Yang- non-Abelian world-sheet gauge fields has a well defined dy-

Mills” model (79) is a linear combination of first-class con- namics(in contrast to the regular-measure case of the previ-

straints only in contrast to the ordinary Yang-Mills case: ~ OUS Subsection provided that the theory possesses the
& -extended Weyl symmetry. We consider the following non-

A 2 Abelian generalization of the original bosonic string action
H=THED A Hi[Ar, Ao} + Agmagt o (TrE - 1), with a modified measuré16) (now we take for simplicity
(86) G,»=n,, andB,,=0):

B. Modified-measure version: The case of closed strings

We will now see that the modified-measure version of

1
j dzacb(go) YP0X X, —\/ ST Fan(AF ca(A) 17y de
fdzocb(qo) Y29 XH3pX ,———=\TI Fo1(A)F 01(A)] ——f d’o @(e)L, (87)
\/_
|
where F,,(A) is the non-Abelian world-sheet gauge field ViE=0,E+1[A4,E]=0, (92

strength as in Eq80).
Similar to what we saw in Sec. |, the variation with re-

spect to the measu® degrees of freedomp' leads to the E= (o) For
equation(provided that® # 0) V=7 VTr(FoiFo)

1 ., 1 with &€ being the non-Abelian electric field strength—the ca-
57 0aX X, = f\/Tr(FmFOl):M- (88 nonically conjugated momentum o%;. Accordingly, Eq.
Y (92) for a=1 represents the non-Abelian Gauss law on the

Varying the action(87) with respect toy?® we get world-sheet. Using Eq€$92) one can easily show that

1 1 (o)
I XHIpX ,— ﬁyab\/Tr(F(,lFOl):O. (89 0=Tr(EVal) = 5da(Tr € ?)= ( = (93
Contracting this equation with?? and comparing with Eq. i.e., the ratio of the measure densitigise magnitude of the
(88) we conclude that again, similar to what was shown innon-Abelian electric field strengthwhich plays the role of a

the simpler model of Sec M =0 and we obtain finally dynamically generated string tension, is again constait:
. =|d(¢)/— y|=const. The equations of motid82), upon
T abs wa - T EF using this fact, coincide with the Eqé32) [Egs. (83)—(85)
VT VY TX X, = VT (ForFon), (%0 similarly hold]. However, in contrast to the regular-measure

version of the theory, now in the context of the modified-

u 1 u B measure mode€B7) we have Eq(90), which upon substitut-
IaX X, = Yab ¥ 0X X, = 0. D ing the solution(84) in \Tr(FoFo) =€’ TrM§ com-
pletely determines the functiof{r, o) in terms of the string
Varying the action(87) with respect toA, we obtain solution.
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C. Charges, strings, and classical mechanism for confinement plest case o$tatic “color” charges C; localized at the points

Classical treatment of strings in the context of the PolyaZi:(i=1.2,...), Eq.(94) reads
kov approach(with the regular-measure densit}—y) al-
lows two possibilities for the string topology: the first one is o TrC-f d7A . 9
a closed string where the string tension is a constant all over Sint static Z. 1) A7Ao(7.). ©9
the string; the second possibility is an open string with end

points (and/or ad hoc with pointlike charges at the end The only changes in the equations of motion, compared to
points. the equations of the previous subsection, occur in (B8)

In the modified-measure string theory there are more posyhich in the axial gaugeX;=0) takes the form
sibilities due to the dynamical mechanism of tension genera-

tion. In fact, for both cases, i.e., for closed and open strings,

one can study models where one or more pointlike charges 9,6~ >, Cid(o—aj)=0 (96)
C;, in generalnon-Abelian“color” ones, are located inside ‘

the string* A simple model describing this situation consists

of adding to the actioti87) the following interaction term: ~ With £ as defined in the second E®2).
Let us first consider the solution of the “Gauss law” Eq.
Sint= _zi f and C, localized at the pointg; and o, with o;<o,. To
get this solution we perform the integration in E6) over

z(:- aTr( C.A)dr . (94) (96) in the case with two static pointlikécolor) chargesC,
[
wherer; indicate the corresponding proper times. In the sim-o from someo <o, up to somes>o,. Then we obtain

& for o<y,
Eo)=1 & for o1<o<o, and &—-&=C;, &—&=C,, (97)
53 for 0g>0;.

To realize the physical case of such an open sttmy  where&;,,&,3,E5, are constants, which implies
periodic boundary conditions i are assumedwith finite
energy we have to consider a finite string, which is possible E10—E31=Cy, &= E1,=C,, &3~ E3=C3.
only if £=&;=0. Then the chargeS, andC, appear to be (100

the end points and it follows from E¢97) that ]
Summing Eqs(100 we get

Cl+ C2:0 and SZZC]_. (98) C1+ C2+ C3:O, (101)

Therefore, Eq(98) becomes the statement for color confine-which means that color confinement appears again, now in

ment of the two pointlike chargeS; (“quarks”) in a color-  the case of a “baryonlike” configuration.

less “mesonlike state” as a result of the variable dynamical Notice that not only the orientations 5,535,837 in

tension of the string connecting them. color space but also their magnitudes are different in general.
In a similar way one can construct a classical string modeThe last statement follows from the fact that E§3) does

for baryons. Let us consideradosedstring parametrized by not hold at the points where the charges are located. This

o(0=<o=<2m) with three static pointlike color charg&s,, means that the charges can be sources of discontinuities of

C,,C; localized at the points,,0,,03, respectively. Then the tension[notice that the second equation {82) still

by solving Eq.(96) we obtain for the “chromoelectric” field, holds. This is possible here precisely due to the identifica-

i.e., the dynamical string tensigg?2), tion of the string tension with the ratio of the measure den-
sities @ (¢)//— v [second Eq(92)] which is also the mag-
&, for o,=0<o<a,, nitude of the pertinent world-sheet “chromoelectric” field
strength. Because of these properties we may call the above
Elo)=1 &3 for o,<o<os, (99 modified-measure string model with &-extended Weyl-
&y for o3<o<2m, invariant non-Abelian world-sheet gauge field acti@) a

“color” string model.

The above simple picture of pointlike charge confinement
4Generically one can consider smooth charge or current distribuvia “color” strings can be straightforwardly generalized to
tions along the string. Such more general cases we will study elsghe case of higher-dimensional branes; namely, let us con-

where; see also the Appendix. siderN nonintersecting “charged” closep( 1)-branes liv-
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ing on a closeg-brane whose dynamics is governed by thecharges via “color” strings is proposed with the colorless-
modified-measure brane actiqd0) and (45). Let us also ness of the corresponding composite “hadrons” automati-
recall that the dynamically generated brane tensiofcf. cally emerging due to the new dynamics inherent in the
second Eq(52)] obeys the brane “Gauss-law” constraint Eq. modified-measure string model. A similar picture of confine-
(60). Denoting byé&; the constant value of in the strip on  ment and colorlessness arises also for systems of “charged”
the fixed-time world-hypersurface of tipebrane situated be- (p—1)-branes coupled via modified-measprbranes.

tween the (— 1)th and thath “charged” (p—1)-branes, we As a by-product, it is found that a nice geometrical mean-
find from Eq.(60) ing can be given for the auxiliary string world-sheet gauge
fields: if these are of the Abelian type, they can represent the

E1=&+e, 1=01,...N with &=E&y,ep=€y. world-sheet spin connection associated with ¢Abelian in

(102 (1+ 1) dimensionsLorentz group see Eq.(14) abovse.
Notice that world-sheet gauge fields have also been con-
Summing up Eqgs(102 we find similarly to the string case sidered in the very interesting wofk3]. In that case, how-
that the only possible configuration of static “charged” ever, a Nambu-Goto approach is employed so that the issue
closed (—1)-branes coupled pairwise via modified- of conformal invariance peculiar to the Polyakov formulation
measurgy-branes(40) is the zero-charge one. is lost.
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tensor gauge fiedd Furthermore, the tension of the string or

brane is not Ionger a fundamental paraméitet, a givenad APPENDIX: STRINGS WITH A MODIEIED MEASURE
hocscale: it is dynamically determined as the magnitude of COUPLED TO WORLD-SHEET CURRENTS

the pertinent gauge field strength and it is proportional to the

ratio of the measure densitidg \/— y. If no charges exist on Let us briefly discuss the case of bosonic strings with a

the world-sheet(world-volume then for closed strings modified world-sheet integration measure coupled to an ex-
(branes the standard Pcﬂyakov-type equations are Obtaine@rnal Space-time dilaton field. The pertinent action reads
and the Poisson-bracket algebra of the relevant Hamiltonian
constraints is the same as that of the standard sthrane
theory. The same result holds also for the modified-measure
superstring model.

The string tension is identified as the canonically conju-
gate momentum of the spatial component of the auxiliary
world-sheet gauge potential; therefore, it assumes the role of
an “electric” field strength. The latter is shown to obey the wijth R(w) being the scalar curvature of tile=2 spin con-
“Gauss-law” equation. Thus, in the presence of world-sheetectionw, defined in Eq(14). Varying Eq.(A1) with respect

charges, the string_ tensi_on can chang.e dy_namically. The .Iago w, We obtain once again dynamically generated string
ter becomes possible since the tension, i.e., the “electrictension as

field strength, is proportional to the ratio of the measure den-

sities®/\/— y. In particular, pointlike charges living on the D (o)

string can be responsible for discontinuous changes of the E=m, = —(pZ/I(X)zconstET (A2)
string tension. The special case, when the string tension ! \/—_y

changes from a finite value to zero, can be regarded as the

formation of an “edge” on the string or, equivalently, as a with , being the canonically conjugated momentum of
new way of formulating open strings. We have shown that ., which brings the actiofAl) to the form

1
S=- f dzatb(cp)[zyabaaxmbXVGW(X)

—R(@)U(X)

s—f d?oc d ()L (A1)

o g . )
similar results hold also for modified-measure theories of

p-branes; namelyp-form (tensor gaugecharges living on 1

the p-brane, in particular, lower-dimensional “chargedp ( 5=_-|-j d2a == yy2Pa X 9 X"
—1)-branes lead to a dynamically changing brane tension. 2

Finally, we studied a conformally(Weyl-)invariant

modified-measure string theory with non-Abelian gaugei.€., an action describing string motion in a conformally
(“square-root Yang-Mills’) field living on the string world-  modified extenal space-time background wita, (X)
sheet called a “color” string. As a result, a simple classical=G,,,(X)/U(X). Thus, the mode(Al) differs significantly
mechanism for “color” confinement of pointlike “color” from the ordinary Polyakov-type string coupled to a dilaton:

Gun(X)
UX)

(A3)
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@ @
(¢) 0 e o an

= =
whereC is a dynamically generated constant scale. The ca-
Now, let us consider a generalization of the string modelnonical Hamiltonian treatment of EqA5) is completely
(16) describing the coupling of the bosonic modified- analogous to the simpler case of E46) in Sec. Il. In par-
measure string through the auxiliary gauge fi&|dto a con- ticular, for the auxiliary “electric” field strength we obtain
served world-sheet currenf®s,v wherev is a world-sheet
scalar field: O(p)

1
S= —Tf d’o V= Y*PIX GpX+ ROVUX)]. sabﬁb( +ev

(A4)

mp=E=——E+ev=C (A8)
' vy
1 . I
S= _f d2o P (o) Eyabaaxurpbxﬂ [cf. Eq. (A7)] and the canonical Hamiltonian becomes
ab H t 1 17>2+E(a X)?2
1 £ =T T — w02l E o
+ = ¥2P9,0 dpv ————=F 1,(A) -y 2lE
2 a 2=y *®

1 2 2
+ E(7TU+ €A +E(d,v)

+ EJ d?oA,e®,. (A5)
,yOl
Notice that the last term in EGA5) can be rewritten in the + W)[Puaoxwr(”ﬁ €A1) g ]. (A9)
form
We have skipped in EqA9) the linear combination of the
gab rest of the primary28) and secondar§B2) constraints which
ef V—vyd?c A, AU, (AB) remain unaltered by the presence of the new fielexcept
NTY for the “Gauss-law” constraint which now readsf. Eq.
(A8)]

which means that by including this term we study a model _
which belongs to the class ofio measure theorid$). do(E+ev)=0. (A10)

The equations of motion with respect Aq read One can check that the basic constraints entering(A9)
span again a closed Poisson-bracket algebra which this time
involves also the “Gauss-law” constraid10) and the fol-
®In D-dimensional space-time the action generically has the forMowing variable string tension equal to the world-sheet
S=[d®x d(¢)L;+[dPXx = yL,, where the Lagrangian densities «g|ectric” field (A8):
L, andL, are independent of the degrees of freedgrbuilding up
D, T=E=C-—ev. (A11)
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