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String and brane models with spontaneously or dynamically induced tension
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We study in some detail the properties of a previously proposed new class of string and brane models whose
world-sheet~world-volume! actions are built with a modified reparametrization-invariant measure of integra-
tion and which do not contain anyad hocdimensionful parameters. The ratio of the new and the standard
Riemannian integration measure densities plays the role of a dynamically generated string or brane tension.
The latter is identified as~the magnitude of! an effective~non-Abelian! electric field strength on the world-
sheet or world-volume obeying the standard Gauss-law constraint. As a result a simple classical mechanism for
confinement via modified-measure ‘‘color’’ strings is proposed where the colorlessness of the ‘‘hadrons’’ is an
automatic consequence of the new string dynamics.
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I. INTRODUCTION: MAIN IDEAS AND FEATURES OF
THE THEORY

One of the characteristic features of string and brane th
ries @1# is the introductionad hocfrom the very beginning of
a dimensionful scale—the so called string~brane! tension.
On the other hand, a lot of attention has been given to
idea that any fundamental theory of nature should not c
tain any ad hoc fundamental scales and that these sca
should rather appear as a result of dynamical generation,
through boundary conditions on the classical level, and sp
taneous symmetry breaking and/or dimensional transm
tion on the quantum level~see, for instance, Ref.@2# about
spontaneous generation of Newton’s gravitational consta!.

In the context of string and brane theories, the above i
was first explored in Refs.@3#. In this section we will briefly
review, with some additional new accents, the main prop
ties of the modified string and brane theories of@3# in order
to prepare the ground for revealing new interesting structu
inherent in these theories. To this end let us first recall
standard Polyakov-type action for the bosonic string, wh
reads@4#

SPol52TE d2s
1

2
A2ggab]aXm]bXnGmn~X!. ~1!

Here (s0,s1)[(t,s); a,b50,1; m,n50,1, . . . ,D21; Gmn

denotes the external space-time metric;gab is the metric de-
fined on the (111)-dimensional world-sheet of the string
andg5detuugabuu. T indicates the string tension—a dime
sionful quantity introducedad hocinto the theory which de-
fines a scale.
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Now following Refs.@3#, instead of the standard measu

of integration d2s A2g, we want to consider a new
reparametrization-invariant measure on the string wo
sheet whose densityF is independent of the Riemannia
metric gab . This approach of considering an alternative i
tegration measure has been studied in the context ofD54
gravitational theory, in particular, in relation to the cosm
logical constant problem@5# ~and references therein!, as well
as the fermion families and long-range force problems@6#.

Indeed, if we introduce two auxiliary scalar fields@scalars
both from the point of view of the (111)-dimensional
world-sheet of the string, as well as from the point of view
the embeddingD-dimensional universe# w i ( i 51,2), we can
construct the following world-sheet measure density:

F~w![
1

2
« i j «

ab]aw i]bw j5« i j ẇ
i]sw j . ~2!

It is interesting to notice thatd2s F(w)5dw1dw2, that is,
the measure of integrationd2s F corresponds to integrating
in the target space of the auxiliary scalar fieldsw i ( i 51,2).

We proceed now with the construction of a new stri
action that employs the integration measured2s F ~2! in-
stead of the usuald2s A2g. When considering the types o
actions we can have under these circumstances, the firs
that comes to mind is the straightforward generalization
the Polyakov-type action~1!:

S152
1

2E d2s F~w!gab]aXm]bXnGmn~X!. ~3!

Notice that multiplyingS1 by a constant, before boundary o
initial conditions are specified, is a meaningless operat
since such a constant can be absorbed in a redefinition o
measure fieldsw i ( i 51,2) that appear inF(w) ~2!.

The form ~3! is, however, not a satisfactory choice for
string action because the variation ofS1 with respect togab

leads to the rather strong condition
©2002 The American Physical Society03-1
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F~w!]aXm]bXnGmn~X!50. ~4!

If FÞ0, it means that]aXm]bXnGmn(X)50, i.e., it means
that the metric induced on the string world-sheet vanish
which is clearly not an acceptable dynamics. Alternatively
F50, no further information is available—also an undes
able situation.

The situation may be improved by introducing an exter
antisymmetric tensor gauge fieldBmn(X). Then, instead of
Eq. ~3!, we have to consider the action

S252E d2s F~w!F1

2
gab]aXm]bXnGmn~X!

1
«ab

2A2g
]aXm]bXnBmn~X!G , ~5!

where«0152«1051 and«005«1150. Varying Eq.~5! with
respect togab, we get~if FÞ0)

]aXm]bXnGmn1gab

«cd

4A2g
]cX

m]dXnBmn50. ~6!

Contracting the latter equation withgab we see that

«cd

2A2g
]cX

m]dXnBmn52gab]aXm]bXnGmn . ~7!

Inserting relation~7! into Eq. ~6! we obtain

]aXm]bXnGmn2
1

2
gabg

cd]cX
m]dXnGmn50, ~8!

which coincides with the form of the string equations
motion corresponding to the Polyakov-type action~1!. How-
ever, the action~5! is not fully satisfactory since it produce
Eq. ~6! as an additional constraint.

To make further progress and at the same time to sh
that one can avoid the need to incorporate an external fie
is important to notice that terms in the action of the form

S5E d2s A2g L, ~9!

which do not contribute to the equations of motion of t
standard closed string, i.e., such thatA2gL is a total deriva-
tive, may yield nontrivial contributions when we consider t
counterparts of Eq.~9! of the form

S5E d2s F~w!L. ~10!

This is so because ifA2g L is a total divergence,FL in
general is not.

The above fact is indeed crucial. For example, let us c
sider the modified-measure string theory with an additio
intrinsic (111)-dimensional scalar curvature term
04600
s,
f
-

l

w
it

-
l

Scurv52E d2s F~w!R, ~11!

which now is not a topological term in contrast to
*d2s A2g R in the ordinary string theory with the regula
world-sheet integration measure. According to Refs.@5#,
where modified-measure gravity theories in higher dim
sionsD.2 have been explored, we know that in order
achieve physically interesting results one has to procee
the first order formalism—employing either the affine co
nection or the spin connection. In the present paper we
restrict ourselves by exploring the spin connection formali
only. This means that the independent dynamical degree

freedom are the zweibeinea
ā , the spin connectionva

āb̄ (ā
50,1 are tangent ‘‘Lorentz’’ indexes!, and the auxiliary sca-
lar fields w i entering the new integration measure dens
F(w) ~2!.

We will use the notationgab5eā
a
eb̄

bh āb̄; the scalar curva-

ture of the spin conection isR(v,e)5eaāebb̄Rāb̄ab(v)
where

Rab
āb̄~v!5]avb

āb̄1va
āc̄vbc̄

b̄
2~a↔b!. ~12!

Notice now that inD52

va
āb̄5va« āb̄, ~13!

whereva is a vector field. Therefore, we get for the sca
curvature

R~v!5
«ab

2A2g
~]avb2]bva!. ~14!

We conclude that the vector fieldva , as a geometrical objec
associated with the spin connection, can be treated a
Abelian gauge fieldAa living on the world-sheet.

Thus, let us consider an Abelian gauge fieldAa defined on
the world-sheet of the string, in addition to the measu
density fieldsw i that appear inF(w) ~2!, the usual Riemann-
ian metricgab , and the string coordinatesXm. We can then
construct the following nontrivial contribution to the actio
of the form:

Sgauge5
1

2E d2s F~w!
«ab

A2g
Fab~A!, Fab5]aAb2]bAa .

~15!

Therefore, the total action to be considered now isSstring
5S21Sgauge, reading explicitly
3-2
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Sstring52E d2s F~w!F1

2
gab]aXm]bXnGmn

1
«ab

2A2g
@]aXm]bXnBmn2Fab~A!#G

[2E d2s F~w!L. ~16!

The properties of this model and some of its generalizati
will be studied in the following sections.

The action ~16! is invariant under a set of diffeomor
phisms in the target space of the measure-density fieldw i

combined with a conformal~Weyl! transformation of the
metric gab , namely,

w i→w8i5w8i~w! so that F→F85JF, ~17!

whereJ5deti]w8 i/]w j i is the Jacobian of the transformatio
~17!, and

gab→gab8 5Jgab . ~18!

In what follows we will refer to the set of transformation
~17!, ~18! asF-extended two-dimensional Weyl transform
tions and, accordingly, to the action~16! as being
F-extended Weyl invariant. Notice also that the sp
curvature term@Eq. ~11! with R as in Eq. ~14!# is also
F-extended Weyl invariant (F-extended Weyl transforma
tions do not affect the spin connection!.

The combination («ab/A2g)Fab is a genuine scalar. In
two dimensions it is proportional toAFabF

ab. In the non-
Abelian case one can consider terms in the action of the f
F ATr(FabF

ab), the latter being aF-extended Weyl-
invariant object@ATr(FabF

ab) is also a genuine scalar#. This
model will be studied in Sec. V below.

To demonstrate some general features of the theory,
will first follow the Lagrangian formalism for solution of th
modified-measure string model~16! explored in Refs.@3#.
Variation of the action~16! with respect tow i yields the
equations~here we setBmn50 for simplicity!

«ab]bw i]aS gcd]cX
m]dXnGmn~X!2

«cd

A2g
FcdD 50.

~19!

If detuu«ab]bw i uuÞ0 meaningF(w)Þ0, then we conclude
that all the derivatives of the quantity inside the parenthe
in Eq. ~19! must vanish, i.e., this, quantity must equal
certain constantM which will be determined later on:

gcd]cX
m]dXnGmn~X!2

«cd

A2g
Fcd5M . ~20!

The equations of motion of the gauge fieldAa tell us about
how the string tension appears as an integration cons
Indeed, these equations are
04600
s

-

-

m

e
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nt.

«ab]bS F~w!

A2g
D 50, ~21!

which can be integrated to yield aspontaneously induced
string tension:

F~w!

A2g
5const[T. ~22!

Notice that Eq. ~22! is perfectly consistent with the
F-extended Weyl symmetry~17!, ~18!. Equation~20!, on the
other hand, is consistent with theF-extended Weyl symme
try only if M50. We will see in the next section that th
equations of motion indeed imply thatM50. In the case of
higher-dimensionalp-branes, unlike the string case, the co
responding equations of motion will require anonvanishing
constant value ofM @cf. Eq. ~49! below#.

Let us turn our attention to the equations of motion d
rived from the variation of Eq.~16! with respect togab:

F~w!S ]aXm]bXnGmn~X!2
1

2
gab

«cd

A2g
FcdD 50. ~23!

Solving the constraint Eq.~20! for («cd/A2g)Fcd and in-
serting the result back into Eq.~23! we obtain @provided
F(w)Þ0]

S ]aXm]bXn2
1

2
gabg

cd]cX
m]dXnDGmn~X!

1
1

2
gabM50. ~24!

Multiplying the above equation bygab and summing over
a,b, we find thatM50, i.e., Eqs.~24! with M50 are ex-
actly of the form of Eqs.~8! coming from the standard
Polyakov-type action~1! ~recall also that it is onlyM50
which is consistent with theF-extended Weyl invariance!.
After Eq. ~22! is used, the equations obtained from the var
tion of the action~16! with respect toXm are seen to be
exactly the same as those obtained from the usual Polya
type action as well.

II. BOSONIC STRINGS WITH A MODIFIED MEASURE:
CANONICAL APPROACH

It is instructive to study the modified-measure stri
model ~16! also within the framework of the canonica
Hamiltonian formalism.

Before proceeding let us note that we can extend
model~16! by putting pointlike charges on the string world
sheet which interact with the world-sheet gauge fieldAa :

S5Sstring2(
i

eiE dtA0~t,s i !. ~25!

For the canonical momenta ofw i ,A1 ,Xm we obtain@using
the short-hand notationL from Eq. ~16!#
3-3
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p i
w52« i j ]sw jL, pA1

[E5
F~w!

A2g
; ~26!

Pm5F~w!F2~g00Ẋn1g01]sXn!Gmn

2
1

A2g
]sXnBmnG . ~27!

Note particularly the second Eq.~26!, showing that the ratio
of the modified and the usual Riemannian integratio
measure densities has the physical meaning of anelectric
field strengthon the world-sheet.1

We have also the following primary constraints:

pA0
50, pgab50, ]sw ip i

w50, ~28!

where the last constraint follows directly from the first E
~26!. From Eqs.~26!, ~27! we can express the velocities
terms of the canonical coordinates and momenta as follo
io

q

y

ry

.

04600
-

.

s:

Ẋm[Ẋm~••• !52
Gmn

A2gg00S Pn

E
1]sXlBnlD2

g01

g00
]sXm,

~29!

Ȧ1[Ȧ1~••• !

5]sA02A2g
p2

w

]sw1
1Ẋm~••• !]sXnBmn

1A2gS 1

2
g00Ẋm~••• !Ẋn~••• !1g01Ẋm~••• !]sXn

1
1

2
g11]sXm]sXnDGmn . ~30!

In Eq. ~30! we used the shorthand notationẊm(•••) defined
in Eq. ~29!. Since the original LagrangianL in Eq. ~16! is
homogeneous of first order with respect toẇ i we have
p i

wẇ i2L50 and, therefore, the canonical Hamiltonian rea
H5P mẊm~••• !1EȦ1~••• !52
1

A2gg00

1

2 FGmn

E
~Pm1E]sXm8Bmm8!~Pn1E]sXn8Bnn8!1EGmn]sXm]sXnG

1
g01

g00
Pm]sXm1E]sA02EA2g

p2
w

]sw1
1(

i
eid~s2s i !A0 , ~31!
a

uted
t in

of

ss
where we used the expressions for the velocities as funct
of the canonical coordinates and momenta~29!, ~30! and we
also included the pointlike charge interaction terms from E
~25!. Commuting of the canonical Hamiltonian~31! with the
primary constraints~28! leads to the following secondar
constraints:

p2
w

]sw1
50, ]sE2(

i
eid~s2s i !50, ~32!

Gmn

E
~Pm1E]sXm8Bmm8!~Pn1E]sXn8Bnn8!

1EGmn]sXm]sXn50, ~33!

Pm]sXm[~Pm1E]sXnBmn!]sXm50. ~34!

1In analogy with ordinary electrodynamics or Yang-Mills theo
the canonically conjugated momentumpA1

[E of the spacelike
gauge-field componentA1 is by definition the electric field strength
However, unlike the ordinary caseE is now not proportional to
F01(A); see also Sec. V for the non-Abelian case.
ns

.

In particular, we obtain that the canonical Hamiltonian is
linear combination of constraints only.

The Poisson algebra of the constraints can be comp
straightforwardly. First, we observe that the last constrain
Eq. ~28! spans a~centerless! Virasoro algebra:

$]sw ip i
w~s!,]s8w

ip i
w~s8!%

52]sw ip i
w~s!]sd~s2s8!1]s~]sw ip i

w!d~s2s8!.

~35!

The only nontrivial commutator of the latter with the rest
the constraints is

H ]sw ip i
w~s!,

p2
w

]sw1
~s8!J 52]sS p2

w

]sw1D d~s2s8!.

~36!

Therefore, both constraints]sw ip i
w andp2

w/]sw1 or, equiva-
lently, their linear combinationF1[]sw ip i

w and F 2

[pw2/]sw12pw1/]sw2, span a closed algebra of first-cla
constraints, which implies that all auxiliary scalarsw i enter-
ing the modified measure~2! arepure gaugedegrees of free-
dom. Let us note that both constraintsF1,2 involving the
auxiliary scalars act only on the latter:
3-4
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d1w i[2$F1~s!,w i~s8!%5]sw id~s2s8!,

d2w i[2$F2~s!,w i~s8!%

52« i j ~]sw j !21d~s2s8!, ~37!

whereas they leave unaffected the rest of the dynam
string degrees of freedom. The same result holds also in
more general case of modified-measurep-brane models.

Next, we observe that the second constraint in Eq.~32! is
nothing but a Gauss-law first-class constraint for the wo
sheet Abelian gauge field, withE being the corresponding
electric field strength. Obviously,E is piecewise constan
~with respect tos) on the world-sheet with jumps at th
locations of the pointlike charges:

E5E01(
i

eiu~s2s i !. ~38!

Moreover, since the canonical Hamiltonian~31! does not de-
pend explicitly onA1 , E is conserved~world-sheet time in-
dependent!.

Finally, the constraints~33!, ~34!, or, more properly, the
linear combinations thereof,
e
:

04600
al
he

-

T 6[
1

4
GmnS Pm

E
6~Gmk6Bmk!]sXkD

3S Pn

E
6~Gnl6Bnl!]sXlD , ~39!

span the same first-class constraint algebra of two mutu
commuting centerless Virasoro algebras as in the case o
ordinary Polyakov-type string @in the standard case
Hmnl(B)[3] [mBnl]50# provided we identify the constan
world-sheet electric fieldE with the ordinary string tension
T.

To summarize so far, we find that the modified-meas
string model~16! @or ~25!#, containing noad hocdimension-
ful parameters, produces adynamically generatedeffective
string tension, which is equal to the ratio of the modified a
usual Riemannian integration-measure densities, and w
has the physical meaning of a world-sheet electric fi
strength. As a result the dynamical string tension is~piece-
wise! constant along the string with possible jumps at t
locations of attached pointlike charges~see Sec. V C for ex-
plicit examples!.

III. BOSONIC BRANES WITH A MODIFIED MEASURE

The action of bosonicp-branes with a modified world-
volume integration measure reads~cf. @3#!
Sp-brane52E dp11s F~w!F1

2
gab]aXm]bXnGmn1

«a1 . . . ap11

~p11!A2g
@]a1

Xm1
•••]ap11

Xmp11Bm1 . . . mp11
2Fa1 . . . ap11

~A!#G
[2E dp11s F~w!L; ~40!

F~w![
1

~p11!!
« i 1 . . . i p11

«a1 . . . ap11]a1
w i 1

•••]ap11
w i p115

1

p!
« i j 1 . . . j p

«a1 . . . apẇ i]a1
w j 1

•••]ap
w j p. ~41!
ure
-

Here the following notation is used:

s[~sa![~s0[t,sa![~t,sW !;

Fa1 . . . ap11
~A!5~p11!] [a1

Aa2 . . . ap11] , ~42!

where a,b50,1, . . . ,p; a,b51, . . . ,p; i , j 51, . . . ,p11;
m,n50,1, . . . ,D21; and Gmn and Bm1 . . . mp11

denote

space-time metric and antisymmetric (p11)-rank tensor ex-
ternal fields, respectively. Also, it is convenient within th
Hamiltonian formalism to introduce the following notation
«a1 . . . apF0a1 . . . ap
~A!5Ȧ2]aA 0

a ~43!

with

A[«a1 . . . apAa1 . . . ap
, A 0

a[«ab1 . . . bp21A0b1 . . . bp21
.

~44!

In analogy with the string case we can put~closed!
(p21)-branes on the world-volume of the modified-meas
p-brane ~40! coupled to the latter via the auxiliary world
volumep-form gauge fieldAa1 . . . ap

giving rise to the follow-
ing additional term in the action~40!:
3-5
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S5Sp-brane1S(p21)-brane,

S(p21)-brane5(
i

eiE dp11s Aa1 . . . ap
~s!E dpu

1

p!
«a1 . . . ap

]s i
a1

]ua1
•••

]s i
ap

]uap
d (p11)@s2s i~u!#

5(
i

eiE dp11s A 0
a~s!E dp21u

1

@~p21!! #2
«aa1 . . . ap21

«m1 . . . mp21
]s i

a1

]um1
•••

]s i
ap21

]ump21
d (p)@sW 2sW i~uW !#.

~45!
e

d-
l

ich
e

f

he
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ion.

m

Here u[(u05t,um)[(t,uW ) with m51, . . . ,p21 are the
world-volume parameters of the pertinent (p21)-branes em-
bedded in the world-volume of the originalp-brane via the
parameter equationss5s i(u) ~and we have chosen th
static gauges0[t5u0 for all of them!.2 Also, in the second
equality ~45! we have used the notation from~44!.

The Lagrangian formalism analysis of the modifie
measurep-brane model~without attached lower-dimensiona
branes! ~40! has been performed in@3#. It parallels the analy-
sis of the modified-measure string model~cf. Sec. I! where
the analogues of Eqs.~20!–~23! now read~taking for sim-
plicity Bm1 . . . mp11

50)

1

2
gab]aXm]bXnGmn2

«a1 . . . ap11

~p11!A2g

3Fa1 . . . ap11
~A!5M , ~46!

«aa1 . . . ap]aS F~w!

A2g
D 50→F~w!

A2g
5const[T, ~47!

]aXm]bXnGmn2
gab

~p11!A2g
«a1 . . . ap11

3Fa1 . . . ap11
~A!50. ~48!

In Eq. ~46! M denotes an arbitrary integration constant wh
enters the relation between the intrinsic and the induced m
rics on thep-brane world-volume that follows from Eqs.~46!
and ~48!:

gab5
p21

2M
]aXm]bXnGmn . ~49!

Also we have

]aXm]bXnGmn2
gab

p11
gcd]cX

m]cX
nGmn50. ~50!

2In what follows we assume that the (p21)-branes do not inter-
sect with each other on the originalp-brane world-volume.
04600
t-

The arbitrariness ofM is due to the manifest invariance o
the modified-measurep-brane action~40! under the follow-
ing global scale symmetry@3#:

w i→l iw
i , gab→S)

i
l i Dgab ,

Aa1 . . . ap
→S)

i
l i D (p21)/2

Aa1 . . . ap
, ~51!

which can be used to fix the value ofM, e.g.,M5 1
2 (p21).

Note that the ‘‘boundary’’ term~45! is not invariant under the
scale symmetry~51!, unless we simultaneously rescale t
‘‘charge’’ coupling constantsei . Moreover, unlike the string
case there is no analogue of theF-extended Weyl symmetry
~17!, ~18! for the modified-measurep-brane model~40!. The
reason is that forp>2 the standard measure densityA2g
transforms differentlyA2g→@J(w)# (p11)/2A2g from the
modified measure densityF(w) ~17! ~cf. Refs.@7#!.

The canonical Hamiltonian treatment of thep-brane
model~40! with attached (p21)-branes on its world-volume
similarly follows the same steps as the canonical treamen
the modified-measure string model in the previous sect
For the canonical momenta ofw i ,A,Xm we have@using the
shorthand notationL from Eq. ~40!#

p i
w52

1

p!
« i j 1••• j p

«a1 . . . ap]a1
w j 1 . . . ]ap

w j pL,

pA[E5
F~w!

A2g
, ~52!

Pm5F~w!F2~g00Ẋn1g0a]aXn!Gmn

2
«a1 . . . ap

A2g
]a1

Xn1
•••]ap

XnpBmn1 . . . npG . ~53!

Also, similarly to Eq.~28! we have the following primary
constraints:

pA
0
a50, pgab50, ]aw ip i

w50, ~54!

where the last Virasoro-like constraints follow directly fro
the first Eq.~52!.
3-6
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At this point it is convenient to reexpress the worl
volume Riemannian metricgab in terms of its purely space
like part gab and the associated shift vectorNa and lapse
function N ~see, e.g.,@8#!:

g0052N2ḡ1ḡabNaNb,

g0a5ḡabNb, ḡab5gab , ~55!

whereḡ5detuugabuu. In particular,A2g5Nḡ.
Using Eqs.~52!, ~53! and the notation~55! we find the

following canonical Hamiltonian@cf. Eq. ~31!# :

H5
N

2 S Gmn

E P̃mP̃n1EḡgabGmn]aXm]bXnD
1E N F~pw,]w!2NaP̃m]aXm

1E]aA 0
a1@~p21!2brane terms# ~56!

with the shorthand notation

P̃m[Pm1E«a1•••ap]a1
Xm1 . . . ]ap

XmpBmm1 . . . mp
,

F~pw,]w![~p21!

3! (
i 52

p11 p i
w

« i j 1 . . . j p
«a1 . . . ap]a1

w j 1
•••]ap

w j p
,

~57!

and where the last terms in Eq.~56! come from Eq.~45!.
Commuting the canonical Hamiltonian~56! with the pri-

mary constraints~54! @where upon using the notations~55!
we havepN50,pNa50,pḡab50 instead ofpgab50# we ob-
tain a set of secondary constraints. Using the Poisson-bra
relation

$]aw ip i
w~sW !,F~pw,]w!~sW 8!%

52d~sW 2sW 8!]aF~pw,]w!~sW ! ~58!

we get the following secondary constraint:

]aF~pw,]w!50→F~pw,]w!522M[const, ~59!

whereM is an arbitrary constant@it is the Hamiltonian coun-
terpart of the arbitrary integration constantM appearing
within the Lagrangian treatment; cf. Eq.~46!#. Once again,
as in the string case, we find that the Virasoro-like co
straints]aw ip i

w together withF(pw,]w)12M50 @the latter
being defined in Eq.~57!# form a closed algebra of first-clas
constraints, implying that the auxiliary scalar fieldsw i are
pure gauge degrees of freedom.

Next, commuting Eq.~56! with pA
0
a yields
04600
ket

-

]aE~s!1(
i

eiE dp21u
1

@~p21!! #2
«aa1 . . . ap21

«m1 . . . mp21

3
]s i

a1

]um1
•••

]s i
ap21

]ump21
d (p)@sW 2sW i~uW !#50, ~60!

which is thep-brane analogue of the ‘‘Gauss’’-law constrai
in the string case@second Eq.~32!#. Further, since the ca
nonical Hamiltonian~56! does not depend explicitly onA
~44! ~canonically conjugate toE), thep-brane ‘‘electric’’ field
strengthE is conserved~world-volume time independent!
and as long as it obeys the generalized ‘‘Gauss law’’ on
world-volume Eq.~60!, E is also a world-volumepiecewise
constant field with jumps along the normals equal to
‘‘charge’’ ei when crossing the world-hypersurface of thei th
(p21)-brane.

The rest of the secondary constraints reads

Gmn

E P̃mP̃n1EḡgabGmn]aXm]bXn24M ḡE50, ~61!

P̃m]aXm50,

]aXm]bXnGmn2
2M

p21
ḡab50. ~62!

We now observe that for the special choiceM5 1
2 (p21),

and provided we identify the ‘‘electric’’ field strengthE as a
dynamical brane tensionT, the constraints~61!, ~62! coin-
cide with the secondary constraints within the Hamiltoni
treatment of the usual Polyakov-likep-brane~the latter to-
gether with the primary constraints forms a mixture of fir
class and second-class constraints!.

Thus, we conclude from Eqs.~56!, ~57! and~61!, ~62! that
the modified-measurep-brane model~40! possesses, apa
from the same brane degrees of freedom as the stan
Polyakov-like p-brane, an additional brane degree of fre
domE—a world-volume ‘‘electric’’ field strength, which can
be identified as a dynamical brane tension and which,
cording to Eq.~60!, may be variable in general.3

IV. SUPERSTRINGS WITH A MODIFIED MEASURE

We consider the following Green-Schwarz-type of sup
string action with a modified world-sheet integration me
sure~for the standard Green-Schwarz superstring action,
e.g. @9#!:

3More detailed discussion of this issue will appear elsewhere: E
Guendelman, A. Kaganovich, E. Nissimov, and S Pacheva, inPro-
ceedings of the First Conference on Gravity, Astrophysics a
Strings at the Black Sea, edited by P. Fizievet al. ~to be published!.
3-7
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Ssuperstring5E d2s F~w!F2
1

2
gabPa

mPb m

1
«ab

A2g
S Pa

m~usm]bu!1
1

2
Fab~A! D G

[2E d2s F~w!L ~63!

with the same notation as in Eqs.~16! and~2! ~for simplicity
we now takeGmn5hmn ,Bmn50) and where

Pa
m[]aXm1 iusm]au. ~64!

Here u[(ua) (a51, . . .,16) denotes a 16-dimension
Majorana-Weyl spinor in the embeddingD510 space-time,
whereassm[„(sm)ab… indicate the upper diagonal 16316
blocks of the 32332 matricesC 21Gm with Gm andC being
the D510 Dirac and charge-conjugation matrices, resp
tively.

The Lagrangian in Eq.~63! is explicitly invariant under
space-time supersymmetry transformations

deu5e, deX
m52 i ~esmu!,

deAa5 i ~esmu!S ]aXm1
i

3
usm]au D . ~65!

In particular, the algebra of supersymmetry transformati
~65! closes onAa up to a gauge transformation:

$de1
,de2

%Aa5]aS 2
2

3
~e1smu!~e2smu! D . ~66!

Also, the modified-measure superstring action~63! is in-
variant under the local fermionic kappa symmetry, simila
to the standard Green-Schwarz superstring action@9#:

dku52iPa
m~smka!, dkXm5 i ~usmdku!,

dkAa50,

dk~A2ggab!528A2gS gac1
«ac

A2g
D ~kb]cu!,

dkw i50, ~67!

where ka5 1
2 (gab1«ab/A2g)kb is the self-dual fermionic

local gauge parameter. In particular, let us note t
dk(F(w)/A2g)50.

Let us note that the action~63! bears a resemblance to th
modified Green-Schwarz superstring action proposed by
gel @10# provided we replace the modified integration me
sure densityF(w) with the ordinary oneA2g and provided
we redefine the auxiliary gauge fieldAa as a fermionic bilin-
ear compositeAa52 iua]afa ~cf. second Ref.@3#! with f
indicating Siegel’s auxiliary fermionic world-sheet field
which is a space-time spinor similar tou. However, let us
emphasize that our present approach to the modified-mea
04600
-

s

t

e-
-

ure

superstring model~63! is consistently based on a fundame
tal ~noncomposite! gauge fieldAa .

For the canonical momenta ofw i ,A1 ,Xm,u we have@us-
ing the shorthand notationL from Eq.~63! and the definition
~64!#

p i
w52« i j ]sw jL, pA1

[E5
F~w!

A2g
, ~68!

Pm5F~w!F2~g00P0m2g01P1m!

1
i

A2g
~usmu8!G , ~69!

PuF2~g00P0 m2g01P1 m!2
i

A2g
Xm8 G iusm, ~70!

where the prime now indicates the derivative]s . From Eqs.
~69!, ~70! and taking into account the second Eq.~68!, we
obtain the fermionic primary constraint

iD[Pu2~Pm2EP1,m!iusm50. ~71!

Therefore, we have the following set of primary constrain

pA0
50, pgab50, ]sw ip i

w50, D50. ~72!

Now, for the velocities as functions of the canonical coor
nate and momenta we get

Ẋm1 iusmu̇[P0
m~••• !

5
1

A2gg00S 2P m

E
1 iusmu8D2

g01

g00
P1

m

~73!

Ȧ12 iP1
m~usmu̇![Ȧ1~••• !

5]sA02A2g
p2

w

]sw1

1A2gS 1

2
g00P0

m~••• !P0m~••• !

1g01P0
m~••• !P1m

1
1

2
g11P1

mP1 mD2 i ~usmu8!P0
m~••• !.

~74!

In Eq. ~74! we used the shorthand notationP0
m(•••) defined

in Eq. ~73!. The canonical Hamiltonian reads

H5P mẊm~••• !1Puu̇~••• !1EȦ1~••• !1 iLaD a

5P mP0
m~••• !1EȦ1~••• !1 iD~ u̇~••• !2L!. ~75!
3-8
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Here (•••) indicate that all velocities are considered as fun
tions of the canonical coordinate and momenta accordin
Eqs. ~73!, ~74!; D is the fermionic primary constraint~71!
and L is the corresponding fermionic Lagrange multipli
which is determined from the requirement of the preser
tion of the constraintD under the Hamiltonian dynamics b
Eq. ~75!. Inserting in Eq.~75! the expressions~73!, ~74! we
obtain

H52
1

A2gg00

1

2 F 1

E
@P m2 iE~usmu8!#

3@Pm2 iE~usmu8!#1EP1
mP1mG

1
g01

g00
@Pm2 iE~usmu8!#P1

m1 iLD

1E]sA02EA2g
p2

w

]sw1
. ~76!

Commuting of the canonical Hamiltonian~76! with the pri-
mary constraints~72! leads to the following secondary con
straints:

p2
w

]sw1
50, ]sE50~ ‘‘Gauss law’’!, ~77!

T1[
1

4 FPE 1E~X822iusu8!G2

2 iu8D50,

T2[
1

4 S P
E

2EX8D 2

. ~78!

Therefore, as in the purely bosonic case we conclude tha
canonical Hamiltonian is a linear combination of constrai
only.

As in the bosonic case, the constraints involving the a
iliary scalar fieldsw i span the same Poisson-bracket alge
~35!, ~36! and, therefore, the auxiliary scalars are again p
gauge degrees of freedom. The rest of the constraint alg
is the same as in the case of the standard Green-Sch
formulation provided ~in full analogy with the purely
bosonic case! we identify the world-sheet ‘‘electric’’ field
strengthE as dynamically generated string tensionT.

Let us recall that the 16-component fermionic spinor co
straintD ~71! ~which is identical to the corresponding ferm
onic constraint in the standard Green-Schwarz superst
model! contains a Lorentz noncovariant mixture of eig
first-class constraints@Hamiltonian generators of kappa sym
metry transformations~67!# and eight second-class con
straints. To solve the problem of super-Poincare´ covariant
quantization of the modified-measure Green-Schwarz su
string ~63! we can, therefore, employ the same kind of ref
mulation of ~63! as in the standard Green-Schwarz ca
which has been proposed in Refs.@11# involving a special set
of additional auxiliary pure gauge bosonic space-time spi
04600
-
to

-
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s

-
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and vector fields which are simultaneously world-sheet s
lars ~‘‘harmonic’’ variables!. For recent developments on th
subject, see@12# and references therein.

V. STRINGS WITH ‘‘ F-EXTENDED WEYL INVARIANT’’
ACTION FOR NON-ABELIAN WORLD-SHEET

GAUGE FIELD

A. The regular-measure version of the theory

As it is well known, in four space-time dimensions th
standard gauge field action proportional
*A2gd4xTr(FmnFmn) is invariant under transformation
gmn→V2(x)gmn , i.e., it is conformally invariant. InD52,
the appropriate conformally invariant action, provided w
use the standard measureA2g, would be

E d2s A2gA1

2
Tr@Fab~A!Fcd~A!#gacgbd

5E d2s ATr@F01~A!F01~A!#, ~79!

where

Fab~A!5]aAb2]bAc1 i @Aa , Ab# ~80!

is a non-Abelian world-sheet gauge field strength and
have usedFab(A)52«abF01(A). As we see, the action~79!
is not only independent of the conformal factor in the metr
but also it is totally metric independent, i.e., theD52
‘‘square-root Yang-Mills’’ model~79! is topological in the
same sense as, e.g., theD53 Chern-Simons model. Becaus
of this fact the string and gauge degrees of freedom turn
to be decoupled.

To see that such a theory does not lead to a well defi
dynamics and instead a modified-measure version of Eq.~79!
is necessary, we consider first the equations of motion
result from Eq.~79!. Variation with respect to gauge field
Aa yields

¹aS F01

ATr~F01F01!
D 50 ~81!

or, equivalently

¹aF012F01

Tr~F01¹aF01!

Tr~F01F01!
50, ~82!

which in turn are equivalent to the equations

¹aF015]af F01 ~83!

with f [ f (t,s) being an arbitrary colorless world-sheet sc
lar field. The general solution of Eq.~83! reads

F015G21ef (t,s)M0G, ~84!

A05G21S 2M 0Es

ds8ef (t,s8) DG2 iG21]tG,
3-9
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A152 iG21]sG, ~85!

where G is an arbitrary (t,s)-dependent element of th
gauge group~reflecting the gauge freedom! whereasM0 is
an arbitrary constant element of the corresponding Lie a
bra.

Thus, we see that in theD52 ‘‘square-root Yang-Mills’’
action ~79! there is an additional freedom in equations
motion ~beyond the usual non-Abelian gauge symmet!
which is manifested in the appearance of the arbitrary~not
determined by the dynamics! world-sheet scalar fieldf (t,s)
in Eqs.~83!–~85!.

This can be equivalently understood from the canon
Hamiltonian point of view; namely, one can show that t
canonical Hamiltonian of theD52 ‘‘square-root Yang-
Mills’’ model ~79! is a linear combination of first-class con
straints only in contrast to the ordinary Yang-Mills case:

H5Tr$E~]sA01 i @A1 ,A0# !%1L0pA0
1

L

2
~Tr E 221!,

~86!
ld

e-

in

04600
e-

f

l

wherepA0
and E5F01/ATr(F01F01) are the canonical mo

menta ofA0 and A1, respectively, and whereL0 ,L are the
corresponding Lagrange multipliers. Notice the appeara
of the third first-class constraint term in Eq.~86! instead of
the standard nonconstraint term12 Tr E 2. Moreover, the total
number of first-class constraints in Eq.~86! exceeds the
number of the underlying degrees of freedom.

B. Modified-measure version: The case of closed strings
without charges

We will now see that the modified-measure version
non-Abelian world-sheet gauge fields has a well defined
namics~in contrast to the regular-measure case of the pre
ous subsection! provided that the theory possesses t
F-extended Weyl symmetry. We consider the following no
Abelian generalization of the original bosonic string acti
with a modified measure~16! ~now we take for simplicity
Gmn5hmn andBmn50):
S52E d2s F~w!F1

2
gab]aXm]bXm2A1

2
Tr@Fab~A!Fcd~A!#gacgbdG

52E d2s F~w!F1

2
gab]aXm]bXm2

1

A2g
ATr@F01~A!F01~A!#G[2E d2s F~w!L, ~87!
a-

the

re
d-
where Fab(A) is the non-Abelian world-sheet gauge fie
strength as in Eq.~80!.

Similar to what we saw in Sec. I, the variation with r
spect to the measureF degrees of freedomw i leads to the
equation~provided thatFÞ0)

1

2
gab]aXm]bXm2

1

A2g
ATr~F01F01!5M . ~88!

Varying the action~87! with respect togab we get

]aXm]bXm2
1

A2g
gabATr~F01F01!50. ~89!

Contracting this equation withgab and comparing with Eq.
~88! we conclude that again, similar to what was shown
the simpler model of Sec I,M50 and we obtain finally

1

2
A2ggab]aXm]bXm5ATr~F01F01!, ~90!

]aXm]bXm2gab

1

2
gcd]cX

m]cXm50. ~91!

Varying the action~87! with respect toAa we obtain
¹aE[]aE1 i @Aa ,E#50, ~92!

E[
F~w!

A2g

F01

ATr~F01F01!

with E being the non-Abelian electric field strength—the c
nonically conjugated momentum ofA1. Accordingly, Eq.
~92! for a51 represents the non-Abelian Gauss law on
world-sheet. Using Eqs.~92! one can easily show that

05Tr~E¹aE!5
1

2
]a~Tr E 2!5

1

2
]aS F~w!

A2g
D 2

, ~93!

i.e., the ratio of the measure densities~the magnitude of the
non-Abelian electric field strength!, which plays the role of a
dynamically generated string tension, is again constant:uEu
[uF(w)/A2gu5const. The equations of motion~92!, upon
using this fact, coincide with the Eqs.~82! @Eqs. ~83!–~85!
similarly hold#. However, in contrast to the regular-measu
version of the theory, now in the context of the modifie
measure model~87! we have Eq.~90!, which upon substitut-
ing the solution~84! in ATr(F01F01)5ef (t,s)ATrM 0

2 com-
pletely determines the functionf (t,s) in terms of the string
solution.
3-10
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C. Charges, strings, and classical mechanism for confinement

Classical treatment of strings in the context of the Pol
kov approach~with the regular-measure densityA2g) al-
lows two possibilities for the string topology: the first one
a closed string where the string tension is a constant all o
the string; the second possibility is an open string with e
points ~and/or ad hoc with pointlike charges at the en
points!.

In the modified-measure string theory there are more p
sibilities due to the dynamical mechanism of tension gene
tion. In fact, for both cases, i.e., for closed and open strin
one can study models where one or more pointlike char
Ci , in generalnon-Abelian‘‘color’’ ones, are located inside
the string.4 A simple model describing this situation consis
of adding to the action~87! the following interaction term:

Sint52(
i
E dsa

dt i
Tr~CiAa!dt i , ~94!

wheret i indicate the corresponding proper times. In the si
ib

e

ca

de

ib
ls

04600
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plest case ofstatic ‘‘color’’ chargesCi localized at the points
s i ,(i 51,2, . . . ), Eq.~94! reads

Sint,static52(
i

TrCiE dtA0~t,s i !. ~95!

The only changes in the equations of motion, compared
the equations of the previous subsection, occur in Eq.~92!
which in the axial gauge (A150) takes the form

]sE2(
i

Cid~s2s i !50 ~96!

with E as defined in the second Eq.~92!.
Let us first consider the solution of the ‘‘Gauss law’’ E

~96! in the case with two static pointlike~color! chargesC1
and C2 localized at the pointss1 and s2 with s1,s2. To
get this solution we perform the integration in Eq.~96! over
s from somes,s1 up to somes.s2. Then we obtain
E~s!5H E1 for s,s1 ,

E2 for s1,s,s2

E3 for s.s2 .

and E22E15C1 , E32E25C2 , ~97!
in

ral.

his
s of

a-
n-

d
ove

ent
to
on-
To realize the physical case of such an open string~no
periodic boundary conditions ins are assumed! with finite
energy we have to consider a finite string, which is poss
only if E1[E3[0. Then the chargesC1 andC2 appear to be
the end points and it follows from Eq.~97! that

C11C250 and E25C1 . ~98!

Therefore, Eq.~98! becomes the statement for color confin
ment of the two pointlike chargesCi ~‘‘quarks’’ ! in a color-
less ‘‘mesonlike state’’ as a result of the variable dynami
tension of the string connecting them.

In a similar way one can construct a classical string mo
for baryons. Let us consider aclosedstring parametrized by
s(0<s<2p) with three static pointlike color chargesC1 ,
C2 ,C3 localized at the pointss1 ,s2 ,s3, respectively. Then
by solving Eq.~96! we obtain for the ‘‘chromoelectric’’ field,
i.e., the dynamical string tension~92!,

E~s!5H E12 for s150,s,s2 ,

E23 for s2,s,s3 ,

E31 for s3,s,2p,

~99!

4Generically one can consider smooth charge or current distr
tions along the string. Such more general cases we will study e
where; see also the Appendix.
le

-

l

l

whereE12,E23,E31 are constants, which implies

E122E315C1 , E232E125C2 , E312E235C3 .
~100!

Summing Eqs.~100! we get

C11C21C350, ~101!

which means that color confinement appears again, now
the case of a ‘‘baryonlike’’ configuration.

Notice that not only the orientations ofE12,E23,E31 in
color space but also their magnitudes are different in gene
The last statement follows from the fact that Eq.~93! does
not hold at the points where the charges are located. T
means that the charges can be sources of discontinuitie
the tension@notice that the second equation in~92! still
holds#. This is possible here precisely due to the identific
tion of the string tension with the ratio of the measure de
sitiesF(w)/A2g @second Eq.~92!# which is also the mag-
nitude of the pertinent world-sheet ‘‘chromoelectric’’ fiel
strength. Because of these properties we may call the ab
modified-measure string model with aF-extended Weyl-
invariant non-Abelian world-sheet gauge field action~87! a
‘‘color’’ string model.

The above simple picture of pointlike charge confinem
via ‘‘color’’ strings can be straightforwardly generalized
the case of higher-dimensional branes; namely, let us c
siderN nonintersecting ‘‘charged’’ closed (p21)-branes liv-

u-
e-
3-11
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ing on a closedp-brane whose dynamics is governed by t
modified-measure brane action~40! and ~45!. Let us also
recall that the dynamically generated brane tensionE @cf.
second Eq.~52!# obeys the brane ‘‘Gauss-law’’ constraint E
~60!. Denoting byEi the constant value ofE in the strip on
the fixed-time world-hypersurface of thep-brane situated be
tween the (i 21)th and thei th ‘‘charged’’ (p21)-branes, we
find from Eq.~60!

Ei 115Ei1ei , i 50,1, . . . ,N with E0[EN ,e0[eN .

~102!

Summing up Eqs.~102! we find similarly to the string case
that the only possible configuration of static ‘‘charge
closed (p21)-branes coupled pairwise via modifie
measurep-branes~40! is the zero-charge one.

VI. DISCUSSION AND CONCLUSIONS

We have seen above how modifying the world-sh
~world-volume! measure of integration can significantly a
fect the implications of string and brane dynamics. First
all, it turns out that, to get an acceptable dynamics, the
responding string and brane theories need the introductio
an auxiliary world-sheet gauge field~a world-volumep-form
tensor gauge field!. Furthermore, the tension of the string
brane is not longer a fundamental parameter~i.e., a givenad
hoc scale!: it is dynamically determined as the magnitude
the pertinent gauge field strength and it is proportional to
ratio of the measure densitiesF/A2g. If no charges exist on
the world-sheet~world-volume! then for closed strings
~branes! the standard Polyakov-type equations are obtai
and the Poisson-bracket algebra of the relevant Hamilton
constraints is the same as that of the standard string~brane!
theory. The same result holds also for the modified-meas
superstring model.

The string tension is identified as the canonically con
gate momentum of the spatial component of the auxili
world-sheet gauge potential; therefore, it assumes the ro
an ‘‘electric’’ field strength. The latter is shown to obey th
‘‘Gauss-law’’ equation. Thus, in the presence of world-sh
charges, the string tension can change dynamically. The
ter becomes possible since the tension, i.e., the ‘‘elect
field strength, is proportional to the ratio of the measure d
sitiesF/A2g. In particular, pointlike charges living on th
string can be responsible for discontinuous changes of
string tension. The special case, when the string ten
changes from a finite value to zero, can be regarded as
formation of an ‘‘edge’’ on the string or, equivalently, as
new way of formulating open strings. We have shown t
similar results hold also for modified-measure theories
p-branes; namely,p-form ~tensor gauge! charges living on
the p-brane, in particular, lower-dimensional ‘‘charged’’ (p
21)-branes lead to a dynamically changing brane tensio

Finally, we studied a conformally~Weyl-!invariant
modified-measure string theory with non-Abelian gau
~‘‘square-root Yang-Mills’’! field living on the string world-
sheet called a ‘‘color’’ string. As a result, a simple classic
mechanism for ‘‘color’’ confinement of pointlike ‘‘color’’
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charges via ‘‘color’’ strings is proposed with the colorles
ness of the corresponding composite ‘‘hadrons’’ autom
cally emerging due to the new dynamics inherent in
modified-measure string model. A similar picture of confin
ment and colorlessness arises also for systems of ‘‘charg
(p21)-branes coupled via modified-measurep-branes.

As a by-product, it is found that a nice geometrical mea
ing can be given for the auxiliary string world-sheet gau
fields: if these are of the Abelian type, they can represent
world-sheet spin connection associated with the~Abelian in
(111) dimensions! Lorentz group@see Eq.~14! above#.

Notice that world-sheet gauge fields have also been c
sidered in the very interesting work@13#. In that case, how-
ever, a Nambu-Goto approach is employed so that the is
of conformal invariance peculiar to the Polyakov formulati
is lost.
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APPENDIX: STRINGS WITH A MODIFIED MEASURE
COUPLED TO WORLD-SHEET CURRENTS

Let us briefly discuss the case of bosonic strings with
modified world-sheet integration measure coupled to an
ternal space-time dilaton field. The pertinent action reads

S52E d2s F~w!F1

2
gab]aXm]bXnGmn~X!

2R~v!U~X!G[2E d2s F~w!L ~A1!

with R(v) being the scalar curvature of theD52 spin con-
nectionva defined in Eq.~14!. Varying Eq.~A1! with respect
to va we obtain once again dynamically generated str
tension as

E[pv1
5

F~w!

A2g
U~X!5const[T ~A2!

with pv1
being the canonically conjugated momentum

v1, which brings the action~A1! to the form

S52TE d2s
1

2
A2ggab]aXm]bXn

Gmn~X!

U~X!
, ~A3!

i.e., an action describing string motion in a conforma
modified extenal space-time background withGmn8 (X)
5Gmn(X)/U(X). Thus, the model~A1! differs significantly
from the ordinary Polyakov-type string coupled to a dilato
3-12
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S52TE d2s
1

2
A2g@gab]aXm]bXm1R~g!U~X!#.

~A4!

Now, let us consider a generalization of the string mo
~16! describing the coupling of the bosonic modifie
measure string through the auxiliary gauge fieldAa to a con-
served world-sheet current«ab]bv wherev is a world-sheet
scalar field:

S52E d2s F~w!F1

2
gab]aXm]bXm

1
1

2
gab]av]bv2

«ab

2A2g
Fab~A!G

1eE d2sAa«ab]bv. ~A5!

Notice that the last term in Eq.~A5! can be rewritten in the
form

eE A2gd2s Aa

«ab

A2g
]bv, ~A6!

which means that by including this term we study a mo
which belongs to the class oftwo measure theories@5#.5

The equations of motion with respect toAa read

5In D-dimensional space-time the action generically has the fo
S5*dDx F(w)L11*dDx A2gL2, where the Lagrangian densitie
L1 andL2 are independent of the degrees of freedomw i building up
F.
-

d

04600
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«ab]bS F~w!

A2g
1ev D 50, i.e.,

F~w!

A2g
5C2ev, ~A7!

whereC is a dynamically generated constant scale. The
nonical Hamiltonian treatment of Eq.~A5! is completely
analogous to the simpler case of Eq.~16! in Sec. II. In par-
ticular, for the auxiliary ‘‘electric’’ field strength we obtain

pA1
[E5

F~w!

A2g
→E1ev5C ~A8!

@cf. Eq. ~A7!# and the canonical Hamiltonian becomes

H52
1

A2gg00

1

2 F 1

E
P 21E~]sX!2

1
1

E
~pv1eA1!21E~]sv !2G

1
g01

g00
@Pm]sXm1~pv1eA1!]sv#. ~A9!

We have skipped in Eq.~A9! the linear combination of the
rest of the primary~28! and secondary~32! constraints which
remain unaltered by the presence of the new fieldv except
for the ‘‘Gauss-law’’ constraint which now reads@cf. Eq.
~A8!#

]s~E1ev !50. ~A10!

One can check that the basic constraints entering Eq.~A9!
span again a closed Poisson-bracket algebra which this
involves also the ‘‘Gauss-law’’ constraint~A10! and the fol-
lowing variable string tension equal to the world-she
‘‘electric’’ field ~A8!:

T[E5C2ev. ~A11!
,

,
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